Virus-induced Gene Silencing as a Tool for Functional Analyses in the Emerging Model Plant Aquilegia (Coumbine, Ranunculaceae)

نویسندگان

  • Elena M. Kramer
  • Billie Gould
  • Elena M Kramer
چکیده

Background: The lower eudicot genus Aquilegia, commonly known as columbine, is currently the subject of extensive genetic and genomic research aimed at developing this taxon as a new model for the study of ecology and evolution. The ability to perform functional genetic analyses is a critical component of this development process and ultimately has the potential to provide insight into the genetic basis for the evolution of a wide array of traits that differentiate flowering plants. Aquilegia is of particular interest due to both its recent evolutionary history, which involves a rapid adaptive radiation, and its intermediate phylogenetic position between core eudicot (e.g., Arabidopsis) and grass (e.g., Oryza) model species. Results: Here we demonstrate the effective use of a reverse genetic technique, virus-induced gene silencing (VIGS), to study gene function in this emerging model plant. Using Agrobacterium mediated transfer of tobacco rattle virus (TRV) based vectors, we induce silencing of PHYTOENE DESATURASE (AqPDS) in Aquilegia vulgaris seedlings, and ANTHOCYANIDIN SYNTHASE (AqANS) and the B-class floral organ identity gene PISTILLATA in A. vulgaris flowers. For all of these genes, silencing phenotypes are associated with consistent reduction in endogenous transcript levels. In addition, we show that silencing of AqANS has no effect on overall floral morphology and is therefore a suitable marker for the identification of silenced flowers in dual-locus silencing experiments. Conclusion: Our results show that TRV-VIGS in Aquilegia vulgaris allows data to be rapidly obtained and can be reproduced with effective survival and silencing rates. Furthermore, this method can successfully be used to evaluate the function of early-acting developmental genes. In the future, data derived from VIGS analyses will be combined with large-scale sequencing and microarray experiments already underway in order to address both recent and ancient evolutionary questions. Background The genus Aquilegia is comprised of approximately 70 species distributed across temperate areas of North America, Europe, and Asia, with several ornamental varieties sold commercially [1]. These species have undergone a very recent and rapid adaptive radiation in response to biotic and abiotic factors, resulting in low sequence variation among species [2-4]. Thus, they are ideal for evolutionary studies in that they display a wide range of ecological and morphological diversity but retain high levels of crosscompatibility between species, allowing for genetic dissection of traits [5]. Aquilegia possesses a small diploid Published: 12 April 2007 Plant Methods 2007, 3:6 doi:10.1186/1746-4811-3-6 Received: 12 March 2007 Accepted: 12 April 2007 This article is available from: http://www.plantmethods.com/content/3/1/6 © 2007 Gould and Kramer; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fabled oaks hope

Two aspects of the genetics of floral traits in Aquilegia have been studied: flower color and flower development. A recent comparative study showed that species that did not produce floral anthocyanins (the red and blue pigments in most flowers) also had significantly lower expression levels for multiple genes needed to produce the pigments. However, crossing studies suggest that a single gene ...

متن کامل

Sugarcane Mosaic Virus-Based Gene Silencing in Nicotiana benthamiana

Background:Potyvirus-based virus-induced gene silencing (VIGS) is used for knocking down the expression of a target gene in numerous plant species. Sugarcane mosaic virus (SCMV) is a monopartite, positive single strand RNA virus. Objectives:pBINTRA6 vector was modified by inserting a gene segment of SCMV in place of Tobacco rattle virus (TRV) genome part 1 (TRV1 or RNA1)...

متن کامل

Tomato and Tobacco Phytoene Desaturase Gene Silencing by Virus-Induced Gene Silencing (VIGS) Technique

Background and Aims: Virus-Induced Gene Silencing (VIGS) is a virus vector technology that exploits antiviral defense mechanism. By infecting plants with recombinant viruses containing host genes inserted in the viral genome, VIGS achieves the RNA silencing process. The purpose of this study was to investigate the possibility of tomato (Lycopersicon esculentum Mill.) and tobacco (Nicotiana be...

متن کامل

Gene Duplication and Transference of Function in the paleoAP3 Lineage of Floral Organ Identity Genes

The floral organ identity gene APETALA3 (AP3) is a MADS-box transcription factor involved in stamen and petal identity that belongs to the B-class of the ABC model of flower development. Thalictrum (Ranunculaceae), an emerging model in the non-core eudicots, has AP3 homologs derived from both ancient and recent gene duplications. Prior work has shown that petals have been lost repeatedly and in...

متن کامل

Elaboration of B gene function to include the identity of novel floral organs in the lower eudicot Aquilegia.

The basal eudicot Aquilegia (columbine) has an unusual floral structure that includes two morphologically distinct whorls of petaloid organs and a clearly differentiated fifth organ type, the staminodium. In this study, we have sought to determine how Aquilegia homologs of the B class genes APETALA3 (AP3) and PISTILLATA (PI) contribute to these novel forms of organ identity. Detailed expression...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007